Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 13(5): e10026, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37153022

RESUMO

The ecology and evolution of prey populations are influenced by predation and predation risk. Our understanding of predator-prey relationships between sharks and dolphins is incomplete due to the difficulties in observing predatory events directly. Shark-inflicted wounds are often seen on dolphin bodies, which can provide an indirect measure of predation pressure. We used photographs of Australian humpback and snubfin dolphins from north, central, and south Queensland to assess the incidence of shark-inflicted bite injuries and to examine interspecific differences in bite injuries and their relationship with group sizes, habitat features, and geographical locations characteristic of where these individuals occurred. The incidence of shark-inflicted scarring did not differ between species (χ 2 = 0.133, df = 1, p = .715), with 33.3% of snubfin and 24.1% of humpback dolphins showing evidence of shark bites when data were pooled across all three study sites. Generalized additive models indicated that dolphins closer to the coast, with greater photographic coverage, and in north Queensland were more likely to have a shark-inflicted bite injury. The similar incidence of shark-inflicted wounds found on snubfin and humpback dolphins suggests both are subject to comparable predation pressure from sharks in the study region. Results highlight the importance that habitat features such as distance to the coast and geographical location could have in predation risk of dolphins from sharks, as well as the importance of considering photographic coverage when assessing the incidence of shark-inflicted bites on dolphins or other marine animals. This study serves as a baseline for future studies on shark-dolphin interactions in Queensland and into how predation may influence dolphin habitat usage, group living, and behavior.

2.
Sci Rep ; 13(1): 3599, 2023 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-36869065

RESUMO

Numerous species have been reported to form mixed-species groups, however, little is known about the interplay between niche partitioning and mixed-species group formation. Furthermore, it is often unclear whether species come together by chance due to overlapping habitat preferences, by shared attraction to resources, or by attraction between them. We assessed habitat partitioning, co-occurrence patterns, and mixed-species group formation of sympatric Australian humpback (Sousa sahulensis) and Indo-Pacific bottlenose dolphins (Tursiops aduncus) around the North West Cape, Western Australia, with a joint species distribution model and temporal analyses of sighting data. Australian humpback dolphins preferred shallower and more nearshore waters than Indo-Pacific bottlenose dolphins, yet these species co-occurred more often than expected by chance given shared responses to environmental variables. Indo-Pacific bottlenose dolphins were sighted more often than Australian humpback dolphins during the afternoon, however, we did not find any temporal patterns in the occurrence of mixed-species groups. We propose that the positive association in the species' occurrence indicates the active formation of mixed-species groups. By evaluating habitat partitioning and co-occurrence patterns, this study provides direction for future work which should proceed to investigate the benefits that these species may gain from grouping with each other.


Assuntos
Golfinho Nariz-de-Garrafa , Cifose , Animais , Austrália , Salmão , Simpatria
3.
Ecol Evol ; 12(11): e9513, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36415876

RESUMO

Group living is a critical component of the ecology of social animals such as delphinids. In many studies on these animals, groups represent sampling units that form the basis of the collection and analysis of data on their abundance, behavior, and social structure. Nevertheless, defining what constitutes a group has proven problematic. There is inconsistency in the terms and criteria used and many definitions lack biological justification. We conducted a literature review and an online expert survey to assess various terms (group, school, party, and pod), and their definitions as applied to delphinids to identify issues to ultimately make recommendations. Of 707 studies analyzed, 325 explicitly defined one or more terms, providing 344 definitions. Additionally, 192 definitions were obtained from the survey. Among these definitions, group was the most common term used (review: 286 definitions, 83.1%; survey: 69 definitions, 35.9%) and the most familiar to the survey respondents (73 respondents, 100.0%). In definitions of group, spatial proximity was the most used criterion (review: 200 definitions, 71.2%; survey: 53 definitions, 81.5%) followed by behavior (review: 176 definitions, 62.6%; survey: 38 definitions, 58.5%). The terms and criteria used to define delphinid groups vary considerably. Rather than proposing a single formal definition, we instead recommend that the term group and spatial proximity criteria be used to define sampling units of individuals observed in the field. Furthermore, we propose a process for formulating definitions that involves analyzing interindividual distances to determine naturally occurring patterns that are indicative of group membership. Although this process is based principally on the spatial proximity of individuals, it could also incorporate the behavior of group members by evaluating the influence of behavior on interindividual distances. Such a process produces definitions that are biologically meaningful and compatible across studies and populations, thus increasing our ability to draw strong conclusions about group living in delphinids.

4.
Mar Pollut Bull ; 184: 114183, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36307952

RESUMO

Dredging is an excavation activity used worldwide in marine and freshwater environments to create, deepen, and maintain waterways, harbours, channels, locks, docks, berths, river entrances, and approaches to ports and boat ramps. However, dredging impacts on marine life, including marine mammals (cetaceans, pinnipeds, and sirenians), remain largely unknown. Here we quantified the effect of dredging operations in 2005 and 2019 on the occurrence of Indo-Pacific bottlenose dolphins (Tursiops aduncus) and long-nosed fur seals (Arctocephalus forsteri) in the Port River estuary, a highly urbanized estuary in Adelaide, South Australia. We applied generalised linear models to two long-term sighting datasets (dolphins: 1992-2020, fur seals: 2010-2020), to analyse changes in sighting rates as a function of dredging operations, season, rainfall, and sea surface temperature. We showed that the fluctuations in both dolphin and fur seal occurrences were not correlated with dredging operations, whereas sea surface temperature and season were stronger predictors of both species sighting rates (with seals more prevalent during the colder months, and dolphins in summer). Given the highly industrial environment of the Port River estuary, it is possible that animals in this area are habituated to high noise levels and therefore were not disturbed by dredging operations. Future research would benefit from analysing short-term effects of dredging operations on behaviour, movement patterns and habitat use to determine effects of possible habitat alteration caused by dredging.


Assuntos
Golfinho Nariz-de-Garrafa , Otárias , Focas Verdadeiras , Animais , Estuários , Ecossistema , Cetáceos
5.
Biology (Basel) ; 11(8)2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-36009806

RESUMO

Species occurring in sympatry and relying on similar and limited resources may partition resource use to avoid overlap and interspecific competition. Aotearoa, New Zealand hosts an extraordinarily rich marine megafauna, including 50% of the world's cetacean species. In this study, we used carbon and nitrogen stable isotopes as ecological tracers to investigate isotopic niche overlap between 21 odontocete (toothed whale) species inhabiting neritic, mesopelagic, and bathypelagic waters. Results showed a clear niche separation for the bathypelagic Gray's beaked whales (Mesoplodon grayi) and sperm whales (Physeter macrocephalus), but high isotopic niche overlap and potential interspecific competition for neritic and mesopelagic species. For these species, competition could be reduced via temporal or finer-scale spatial segregation or differences in foraging behaviour. This study represents the first insights into the coexistence of odontocetes in a biodiverse hotspot. The data presented here provide a critical baseline to a system already ongoing ecosystem change via ocean warming and subsequent effects on prey abundance and distributions.

6.
BMC Ecol Evol ; 22(1): 88, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35818031

RESUMO

BACKGROUND: High levels of standing genomic variation in wide-ranging marine species may enhance prospects for their long-term persistence. Patterns of connectivity and adaptation in such species are often thought to be influenced by spatial factors, environmental heterogeneity, and oceanographic and geomorphological features. Population-level studies that analytically integrate genome-wide data with environmental information (i.e., seascape genomics) have the potential to inform the spatial distribution of adaptive diversity in wide-ranging marine species, such as many marine mammals. We assessed genotype-environment associations (GEAs) in 214 common dolphins (Delphinus delphis) along > 3000 km of the southern coast of Australia. RESULTS: We identified 747 candidate adaptive SNPs out of a filtered panel of 17,327 SNPs, and five putatively locally-adapted populations with high levels of standing genomic variation were disclosed along environmentally heterogeneous coasts. Current velocity, sea surface temperature, salinity, and primary productivity were the key environmental variables associated with genomic variation. These environmental variables are in turn related to three main oceanographic phenomena that are likely affecting the dispersal of common dolphins: (1) regional oceanographic circulation, (2) localised and seasonal upwellings, and (3) seasonal on-shelf circulation in protected coastal habitats. Signals of selection at exonic gene regions suggest that adaptive divergence is related to important metabolic traits. CONCLUSION: To the best of our knowledge, this represents the first seascape genomics study for common dolphins (genus Delphinus). Information from the associations between populations and their environment can assist population management in forecasting the adaptive capacity of common dolphins to climate change and other anthropogenic impacts.


Assuntos
Golfinhos Comuns , Animais , Genética Populacional , Genômica , Genótipo , Oceanografia
7.
Ecol Evol ; 12(5): e8937, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35646312

RESUMO

Ecological niche theory predicts the coexistence of closely related species is promoted by resource partitioning in space and time. Australian snubfin (Orcaella heinsohni) and humpback (Sousa sahulensis) dolphins live in sympatry throughout most of their range in northern Australian waters. We compared stable isotope ratios of carbon (δ13C) and nitrogen (δ15N) in their skin to investigate resource partitioning between these ecologically similar species. Skin samples were collected from live Australian snubfin (n = 31) and humpback dolphins (n = 23) along the east coast of Queensland in 2014-2015. Both species had similar δ13C and δ15N values and high (>50%) isotopic niche space overlap, suggesting that they feed at similar trophic levels, have substantial dietary overlap, and rely on similar basal food resources. Despite similarities, snubfin dolphins were more likely to have a larger δ15N value than humpback dolphins, indicating they may forage on a wider diversity of prey. Humpback dolphins were more likely to have a larger δ13C range suggesting they may forage on a wider range of habitats. Overall, results suggest that subtle differences in habitat use and prey selection are likely the principal resource partitioning mechanisms enabling the coexistence of Australian snubfin and humpback dolphins.

8.
Sci Rep ; 10(1): 14366, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32873830

RESUMO

Increasing human activity along the coast has amplified the extinction risk of inshore delphinids. Informed selection and prioritisation of areas for the conservation of inshore delphinids requires a comprehensive understanding of their distribution and habitat use. In this study, we applied an ensemble species distribution modelling approach, combining results of six modelling algorithms to identify areas of high probability of occurrence of the globally Vulnerable Australian humpback dolphin in northern Ningaloo Marine Park (NMP), north-western Australia. Model outputs were based on sighting data collected during systematic, boat-based surveys between 2013 and 2015, and in relation to various ecogeographic variables. Water depth and distance to coast were identified as the most important variables influencing dolphin presence, with dolphins showing a preference for shallow waters (5-15 m) less than 2 km from the coast. Areas of high probability (> 0.6) of dolphin occurrence were primarily (90%) in multiple use areas where extractive human activities are permitted, and were poorly represented in sanctuary (no-take) zones. This spatial mismatch emphasises the need to reassess for future spatial planning and marine park management plan reviews for NMP. Shallow, coastal waters identified here should be considered priority areas for the conservation of this Vulnerable species.


Assuntos
Distribuição Animal/fisiologia , Golfinhos/fisiologia , Ecossistema , Espécies em Perigo de Extinção , Algoritmos , Animais , Baías , Atividades Humanas , Humanos , Modelos Estatísticos , Dinâmica Populacional , Estações do Ano , Austrália Ocidental
10.
PLoS One ; 15(5): e0231577, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32380516

RESUMO

Southern right whales (Eubalaena australis) migrate between Austral-winter calving and socialising grounds to offshore mid- to high latitude Austral-summer feeding grounds. In Australasia, winter calving grounds used by southern right whales extend from Western Australia across southern Australia to the New Zealand sub-Antarctic Islands. During the Austral-summer these whales are thought to migrate away from coastal waters to feed, but the location of these feeding grounds is only inferred from historical whaling data. We present new information on the satellite derived offshore migratory movements of six southern right whales from Australasian wintering grounds. Two whales were tagged at the Auckland Islands, New Zealand, and the remaining four at Australian wintering grounds, one at Pirates Bay, Tasmania, and three at Head of Bight, South Australia. The six whales were tracked for an average of 78.5 days (range: 29 to 150) with average individual distance of 38 km per day (range: 20 to 61 km). The length of individually derived tracks ranged from 645-6,381 km. Three likely foraging grounds were identified: south-west Western Australia, the Subtropical Front, and Antarctic waters, with the Subtropical Front appearing to be a feeding ground for both New Zealand and Australian southern right whales. In contrast, the individual tagged in Tasmania, from a sub-population that is not showing evidence of post-whaling recovery, displayed a distinct movement pattern to much higher latitude waters, potentially reflecting a different foraging strategy. Variable population growth rates between wintering grounds in Australasia could reflect fidelity to different quality feeding grounds. Unlike some species of baleen whale populations that show movement along migratory corridors, the new satellite tracking data presented here indicate variability in the migratory pathways taken by southern right whales from Australia and New Zealand, as well as differences in potential Austral summer foraging grounds.


Assuntos
Migração Animal/fisiologia , Comunicações Via Satélite/estatística & dados numéricos , Estações do Ano , Telemetria/métodos , Baleias/fisiologia , Animais , Austrália , Modelos Estatísticos , Nova Zelândia
11.
Sci Rep ; 10(1): 1891, 2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-32024905

RESUMO

Social relationships in female mammals are usually determined by an interplay among genetic, endogenous, social and ecological factors that ultimately affect their lifetime reproductive success. However, few studies have attempted to control for, and integrate these factors, hampering our understanding of drivers underlying female sociality. Here, we used generalized affiliation indices, combined with social networks, reproductive condition, and genetic data to investigate drivers of associations in female southern Australian bottlenose dolphins. Our analysis is based on photo-identification and genetic data collected through systematic boat surveys over a two-year study period. Female dolphins formed preferred associations and social clusters which ranged from overlapping to discrete home ranges. Furthermore, matrilineal kinship and biparental relatedness, as well as reproductive condition, correlated with the strength of female affiliations. In addition, relatedness for both genetic markers was also higher within than between social clusters. The predictability of resources in their embayment environment, and the availability of same-sex relatives in the population, may have favoured the formation of social bonds between genetically related females and those in similar reproductive condition. This study highlights the importance of genetic, endogenous, social and ecological factors in determining female sociality in coastal dolphins.


Assuntos
Comportamento Animal/fisiologia , Golfinho Nariz-de-Garrafa/fisiologia , Aptidão Genética , Reprodução/fisiologia , Comportamento Social , Animais , Austrália , Golfinho Nariz-de-Garrafa/psicologia , Feminino , Marcadores Genéticos , Comportamento de Retorno ao Território Vital
12.
J Hered ; 111(7): 652-660, 2020 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-33475708

RESUMO

Speciation is a fundamental process in evolution and crucial to the formation of biodiversity. It is a continuous and complex process, which can involve multiple interacting barriers leading to heterogeneous genomic landscapes with various peaks of divergence among populations. In this study, we used a population genomics approach to gain insights on the speciation process and to understand the population structure within the genus Sousa across its distribution in the Indo-Pacific region. We found 5 distinct clusters, corresponding to S. plumbea along the eastern African coast and the Arabian Sea, the Bangladesh population, S. chinensis off Thailand and S. sahulensis off Australian waters. We suggest that the high level of differentiation found, even across geographically close areas, is likely determined by different oceanographic features such as sea surface temperature and primary productivity.


Assuntos
Golfinhos/genética , Genética Populacional , Genômica , Animais , Biodiversidade , Análise por Conglomerados , Ecossistema , Variação Genética , Geografia , Oceano Índico , Oceano Pacífico
13.
Sci Rep ; 9(1): 8044, 2019 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-31142765

RESUMO

Informed conservation management of marine mammals requires an understanding of population size and habitat preferences. In Australia, such data are needed for the assessment and mitigation of anthropogenic impacts, including fisheries interactions, coastal zone developments, oil and gas exploration and mining activities. Here, we present large-scale estimates of abundance, density and habitat preferences of southern Australian bottlenose dolphins (Tursiops sp.) over an area of 42,438km2 within two gulfs of South Australia. Using double-observer platform aerial surveys over four strata and mark-recapture distance sampling analyses, we estimated 3,493 (CV = 0.21; 95%CI = 2,327-5,244) dolphins in summer/autumn, and 3,213 (CV = 0.20; 95%CI = 2,151-4,801) in winter/spring of 2011. Bottlenose dolphin abundance and density was higher in gulf waters across both seasons (0.09-0.24 dolphins/km2) compared to adjacent shelf waters (0.004-0.04 dolphins/km2). The high densities of bottlenose dolphins in the two gulfs highlight the importance of these gulfs as a habitat for the species. Habitat modelling associated bottlenose dolphins with shallow waters, flat seafloor topography, and higher sea surface temperatures (SSTs) in summer/autumn and lower SSTs in winter/spring. Spatial predictions showed high dolphin densities in northern and coastal gulf sections. Distributional data should inform management strategies, marine park planning and environmental assessments of potential anthropogenic threats to this protected species.


Assuntos
Distribuição Animal/fisiologia , Golfinho Nariz-de-Garrafa/fisiologia , Conservação dos Recursos Naturais , Ecossistema , Animais , Monitorização de Parâmetros Ecológicos/estatística & dados numéricos , Densidade Demográfica , Estações do Ano , Água do Mar , Austrália do Sul , Temperatura
14.
Sci Rep ; 8(1): 15659, 2018 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-30353106

RESUMO

As marine predators experience increasing anthropogenic pressures, there is an urgent need to understand their distribution and their drivers to inform spatial conservation planning. We used an ensemble modelling approach to investigate the spatio-temporal distribution of southern Australian bottlenose dolphins (Tursiops cf. australis) in relation to a variety of ecogeographical and anthropogenic variables in Coffin Bay, Thorny Passage Marine Park, South Australia. Further, we evaluated the overlap between current spatial management measures and important dolphin habitat. Dolphins showed no distinct seasonal shifts in distribution patterns. Models of the entire study area indicate that zones of high probability of dolphin occurrence were located mainly within the inner area of Coffin Bay. In the inner area, zones with high probability of dolphin occurrence were associated with shallow waters (2-4 m and 7-10 m) and located within 1,000 m from land and 2,500 m from oyster farms. The multi-modal response curve of depth in the models likely shows how the different dolphin communities in Coffin Bay occupy different embayments characterized by distinct depth patterns. The majority of areas of high (>0.6) probability of dolphin occurrence are outside sanctuary zones where multiple human activities are allowed. The inner area of Coffin Bay is an important area of year-round habitat suitability for dolphins. Our results can inform future spatial conservation decisions and improve protection of important dolphin habitat.


Assuntos
Golfinho Nariz-de-Garrafa/fisiologia , Conservação dos Recursos Naturais , Ecossistema , Modelos Teóricos , Animais , Austrália , Baías , Geografia , Atividades Humanas , Probabilidade , Estações do Ano , Especificidade da Espécie
15.
Ecol Evol ; 8(1): 242-256, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29321867

RESUMO

Information on site fidelity and ranging patterns of wild animals is critical to understand how they use their environment and guide conservation and management strategies. Delphinids show a wide variety of site fidelity and ranging patterns. Between September 2013 and October 2015, we used boat-based surveys, photographic identification, biopsy sampling, clustering analysis, and geographic information systems to determine the site-fidelity patterns and representative ranges of southern Australian bottlenose dolphins (Tursiops cf. australis) inhabiting the inner area of Coffin Bay, a highly productive inverse estuary located within Thorny Passage Marine Park, South Australia. Agglomerative hierarchical clustering (AHC) of individuals' site-fidelity index and sighting rates indicated that the majority of dolphins within the inner area of Coffin Bay are "regular residents" (n = 125), followed by "occasional residents" (n = 28), and "occasional visitors" (n = 26). The low standard distance deviation indicated that resident dolphins remained close to their main center of use (range = 0.7-4.7 km, X ± SD = 2.3 ± 0.9 km). Representative ranges of resident dolphins were small (range = 3.9-33.5 km2, X ± SD = 15.2 ± 6.8 km2), with no significant differences between males and females (Kruskal-Wallis, χ2 = 0.426, p = .808). The representative range of 56% of the resident dolphins was restricted to a particular bay within the study area. The strong site fidelity and restricted ranging patterns among individuals could be linked to the high population density of this species in the inner area of Coffin Bay, coupled with differences in social structure and feeding habits. Our results emphasize the importance of productive habitats as a major factor driving site fidelity and restricted movement patterns in highly mobile marine mammals and the high conservation value of the inner area of Coffin Bay for southern Australian bottlenose dolphins.

16.
PLoS One ; 13(1): e0189200, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29298312

RESUMO

In threatened wildlife populations, it is important to determine whether observed low genetic diversity may be due to recent anthropogenic pressure or the consequence of historic events. Historical size of the Irrawaddy dolphin (Orcaella brevirostris) population inhabiting the Mekong River is unknown and there is significant concern for long-term survival of the remaining population as a result of low abundance, slow reproduction rate, high neonatal mortality, and continuing anthropogenic threats. We investigated population structure and reconstructed the demographic history based on 60 Irrawaddy dolphins samples collected between 2001 and 2009. The phylogenetic analysis indicated reciprocal monophyly of Mekong River Orcaella haplotypes with respect to haplotypes from other populations, suggesting long-standing isolation of the Mekong dolphin population from other Orcaella populations. We found that at least 85% of all individuals in the two main study areas: Kratie and Stung Treng, bore the same mitochondrial haplotype. Out of the 21 microsatellite loci tested, only ten were polymorphic and exhibited very low levels of genetic diversity. Both individual and frequency-based approaches suggest very low and non-significant genetic differentiation of the Mekong dolphin population. Evidence for recent bottlenecks was equivocal. Some results suggested a recent exponential decline in the Mekong dolphin population, with the current size being only 5.2% of the ancestral population. In order for the Mekong dolphin population to have any potential for long-term survival, it is imperative that management priorities focus on preventing any further population fragmentation or genetic loss, reducing or eliminating anthropogenic threats, and promoting connectivity between all subpopulations.


Assuntos
Golfinhos/genética , Variação Genética , Animais , Sudeste Asiático , Demografia
17.
Adv Mar Biol ; 73: 157-92, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26790892

RESUMO

Australian humpback dolphins (Sousa sahulensis) were recently described as a new species endemic to northern Australia and potentially southern New Guinea. We assessed the species conservation status against IUCN Red List Criteria using available information on their biology, ecology and threatening processes. Knowledge of population sizes and trends across the species range is lacking. Recent genetic studies indicate Australian humpback dolphins live in small and relatively isolated populations with limited gene flow among them. The available abundance estimates range from 14 to 207 individuals and no population studied to date is estimated to contain more than 104 mature individuals. The Potential Biological Removal method indicates populations are vulnerable to even low rates of anthropogenic mortality. Habitat degradation and loss is ongoing and expected to increase across the species range in Australia, and a continuing decline in the number of mature individuals is anticipated. Considering the available evidence and following a precautionary approach, we considered this species as Vulnerable under IUCN criterion C2a(i) because the total number of mature individuals is plausibly fewer than 10,000, an inferred continuing decline due to cumulative impacts, and each of the populations studied to date is estimated to contain fewer than 1000 mature individuals. Ongoing research efforts and recently developed research strategies and priorities will provide valuable information towards the future conservation and management of Australian humpback dolphins.


Assuntos
Conservação dos Recursos Naturais , Golfinhos/classificação , Golfinhos/fisiologia , Espécies em Perigo de Extinção , Distribuição Animal , Migração Animal , Animais , Austrália , Comportamento Animal/fisiologia , Ecossistema , Dinâmica Populacional , Comportamento Social , Especificidade da Espécie
18.
Adv Mar Biol ; 73: 193-218, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26790893

RESUMO

Among the many cetacean species that occupy Australian coastal waters, Australian humpback dolphins, Sousa sahulensis, are one of the most vulnerable to extirpation due to human activities. This review summarises the existing knowledge, presently occurring and planned research projects, and current conservation measures for humpback dolphins in Western Australia (WA). Rapid and wide-scale coastal development along the northern WA coastline has occurred despite a lack of baseline data for inshore dolphins and, therefore, without a precautionary approach to their conservation. The distribution, abundance, habitat use, and population structure of humpback dolphins remain poorly understood. Less than 1% of their inferred distribution has so far been studied to understand local population demography. The sparse data available suggest that WA humpback dolphins occur as localised populations in low numbers within a range of inshore habitats, including both clear and turbid coastal waters. Marine protected areas cover a third of their inferred distribution in WA, but the efficacy of these reserves in protecting local cetacean populations is unknown. There is a pressing need for coordination and collaboration among scientists, government agencies, industry bodies, Traditional Owners, and local community groups to fill in the gaps of information on humpback dolphins in WA. The recently developed strategies and sampling guidelines developed by state and federal governments should serve as a best practise standard for collection of data aimed at assessing the conservation status of humpback dolphins in WA and Australia.


Assuntos
Conservação dos Recursos Naturais , Golfinhos/fisiologia , Espécies em Perigo de Extinção , Distribuição Animal , Migração Animal , Animais , Comportamento Animal/fisiologia , Ecossistema , Dinâmica Populacional , Comportamento Social , Especificidade da Espécie , Austrália Ocidental
19.
Adv Mar Biol ; 73: 273-314, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26790895

RESUMO

Determining the sex of free-ranging cetaceans can be challenging. Sexual dimorphism among external features may allow inferences on sex, but such patterns may be difficult to detect and are often confounded by age and geographic variation. Dorsal fin images of 107 female and 54 male Australian humpback dolphins, Sousa sahulensis, from Western Australia (WA) and Queensland (QLD) were used to investigate sex, age and geographic differences in colouration, height/length quotient and number of notches. Adult males exhibited more dorsal fin notches (p<0.001) and a significantly greater loss of pigmentation on the upper half of their dorsal fins (p<0.001) than did adult females. These differences likely reflect that males experience a higher frequency and/or intensity of intraspecific aggression than females. In QLD, heavily spotted dorsal fins were more frequent among females than males (p<0.001). Logistic regression analyses revealed that dorsal fin spotting and loss of pigmentation on the upper half of the dorsal fin provided the best model parameters for predicting the sex of sampled adults, with 97% accuracy. This technique offers a rapid, non-invasive method for predicting sex in Australian humpback dolphins, which could potentially be applied to populations throughout their range. In contrast to adults, presumed immature animals showed little or no loss of pigmentation or spotting; however, the rate of development of these features remains unknown. There were pronounced differences between QLD and WA in the intensity of spotting on dorsal fins and the extent of pigmentation loss around the posterior insertion and trailing edge of the dorsal fin. While based on a limited sample size, these geographic differences may have conservation implications in terms of population subdivision and should be investigated further.


Assuntos
Distribuição Animal , Nadadeiras de Animais/anatomia & histologia , Golfinhos/anatomia & histologia , Golfinhos/fisiologia , Animais , Feminino , Masculino , Fatores Sexuais , Especificidade da Espécie
20.
J Acoust Soc Am ; 136(2): 930-8, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25096127

RESUMO

Australian snubfin and Indo-Pacific humpback dolphins co-occur throughout most of their range in coastal waters of tropical Australia. Little is known of their ecology or acoustic repertoires. Vocalizations from humpback and snubfin dolphins were recorded in two locations along the Queensland coast during 2008 and 2010 to describe their vocalizations and evaluate the acoustic differences between these two species. Broad vocalization types were categorized qualitatively. Both species produced click trains burst pulses and whistles. Principal component analysis of the nine acoustic variables extracted from the whistles produced nine principal components that were input into discriminant function analyses to classify 96% of humpback dolphin whistles and about 78% of snubfin dolphin calls correctly. Results indicate clear acoustic differences between the vocal whistle repertoires of these two species. A stepwise routine identified two principal components as significantly distinguishable between whistles of each species: frequency parameters and frequency trend ratio. The capacity to identify these species using acoustic monitoring techniques has the potential to provide information on presence/absence, habitat use and relative abundance for each species.


Assuntos
Acústica , Golfinhos/fisiologia , Vocalização Animal , Animais , Análise Discriminante , Golfinhos/classificação , Monitoramento Ambiental/métodos , Oceanos e Mares , Análise de Componente Principal , Queensland , Processamento de Sinais Assistido por Computador , Espectrografia do Som , Especificidade da Espécie , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...